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INTRODUCTION AND SUMMARY

This is the final report on contract NAS 8-11020 entitled "Optimum
Trajectory Study".

In this section we will try to give a verbal account of the problems
considered, the reasons for considering them, and the main results ob-
tained. The remaining sections, while having independent introductionms,
will contain the mathematical analysis.

The major objective of this study was to examine the use of Hamilton
Jacobi partial differential equations in determining fields of optimum
trajectories and to study sufficiency conditions. Since a great number
of optimal control problems can, with a slight reformulation, be posed as
time optimal problems, our attention is focused throughout on problems of
this type.

If given initial data, say time t = to9 state x = x, for a time
optimal problem, the reachable set (in Euclidean (n+l) dimensional time—
state space) is defined to be the set of all points (t, x) with time
t > to and state x such that it can be attained in time t by a trajectory
of the dynamical system with an admissible control. Under very mild con-
ditions on the dynamical system equations and the control set, it is
known that a time optimal point to point transfer will lead to a tra-
Jectory which lies on the boundary of the reachable set, Convefsely,
trajectories which lie on the boundary of the reachable set are excellent
candidates for being time optimal for some point to point transfer, and
thus conditions which single them out are of interest. Now a point is on
the boundary of the reachable set if in every neighborhood of it there are

points not in the reachable set; i.e., points not attainable by trajectories
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of the dynamical system. This leads one naturally to notions of
controllability.

Following the definition of Kalman, a linear system is said to be
completely controllable at time to if every'étate can be attained
(with afz control) in finite time by a trajectory of the system having
arbitrarj initial data (t09 xo)° Tﬁus one can examine whether the terminal
data has been chosen so that the mission is possible. It is of further
interest to defineklocal confrollability,<ioe,, a system is locally con-

trollable along a solution trajectory P(t) if for some t. = to all

1
points in some state space neighborhood of }?(tl) are attainable in

time tl by trajectories with admissible controls. Obviously trajectories
along which a system is locally controllable cannot remain on the boundary
of the reachable set, and hence this becomes a test for optimality. It
might also be remarked that while for linear systems one could expect
global controllability results, for nonlinear systems it is natural to
expect only local results.

In Section I, the Kalman criterion for complete controllability for a
linear system is derived in a simple manner (corollary I.l) and an ex-
tension is obtained for a special form of nonlinear system (Theorem I.2).

In Section II, the nonlinear system ;(t) = g(t, x(t))+H(t,x(t))u(t),
x an n vector, H an nxr matrix, u and r vector valued control with
l=r =n, is studied. If B(t, x) is an (n-r)xn matrix, of maximal rank,
such that B(t,x)H(t,x) = O, the local controllability of the above system
is shown to be closely related to the integrability of the pfaffian system
B(t,x)dx - B(t,x) g(t, x)dt = O. In particular, the above nonlinear
system is defined to be completely controllable if the associated pfaffian

system is not integrable. Theorem II.1 then shows that in the special




case of a linear system, this definition yields a criterion for complete
controllability equivalent to that of Kalman. This new criterion is use-~
ful gince it does not depend on the knowledge of a fundamental solution
matrix for a time varying linear system. Its use is demonstrated by ob-
taining the result that an n dimensional system, formed from a single n%
order linear time varying differential equation of the form x(n)(t) +
al(t) x(n-l)(t) + 0 0 o0 + an(t) x(t) = u(t), is completely controllable.
(Here u is a scalar valued control). This result was previously known if
the functions ai(t) were constant,

The remainder of section II deals with local controllability in a
neighborhood of singular arcs. It is shown that local tests, which
depend on examining the controllability of the variational equation along
a singular arc will always be non-conclusive. Along an optimal singular
arc the system is truly not locally controllable, however it is shown by
example (example II.2) that singular arcs can exist along which the system
is locally controllable. These can be thought of as inflection points in
function space, of the functional (time) which is to be extremized. They are
analogous to inflection points which arise when extremizing a real valued
function F on a manifold in Euclidean space; i.e., non-extremal points at
which the map F induces on the tangent space of the manifold into the tan-
gent space of the reals, vanishes.

These arcs are singular also in the sense of the classical calculus of
variations, hence the Hilbert differentiability condition fails to hold along
them, and classical gufficiency conditions fail,

In section III, the study of feedback control via the Pontriagin maximum

principle and Hamilton Jacobi theory is begun. Often the feedback control
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which the maximum principle prescribes, is discontinuous in the state
variables, which in turn leads to a Hamilton Jacobi equation with dis-
continuous coefficients. This is impractical both from a theoretical and
computational viewpoint. The first part of section III deals mainly with
the reason for this discontinuity, and yields conditions such that the
maximum principle would prescribe a continuous or even Cl (once continuously
differentiable) control. Theorems III.4 and III.5 then show that whenever a
control problem merely satisfies the conditions of Fillipov for the
existence of an optimal control, there exists an approximate problem (the
precise definition of this precedes theorem III.4) for which the maximum
principle gives a C1 control; and such that for any given € >0, an
optimal trajectory of the original problem will be in an € neighborhood
of that for the approximate problem.

The remainder of section IIT deals with the Hamilton Jacobi theory for
these smooth approximate problems, and for the special case of the control
appearing linearly, an easy construction for the approximating problem is
shown, while an example (example III.l) is worked out in detail to
demonstrate the results.

Two sets of references are given, the first for sections I and II, the

second for section III.
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CONTROLLABILITY AND THE SINGULAR PROBLEM

INTRODUCTION TO SECTIONS I AND II

The concept of complete controllability of linear systems was
introduced by R. E. Kalman [1]. It is part of the purpose of this
paper to extend the concept to nonlinear systems; with control appear-
ing linearly. All systems considered are of this form.

Geometrically, a linear system is completely controllable at time
to if any state can be attained in finite time by a trajectory of the
system having arbitrary initial data x, at time to. The motivation for
the extension of this concept to nonlinear systems came largely from
results obtained in [2] and from the geometric interpretation of non~
integrability of pfaffians given in [5] and [#]. In particular, Cara-
theodory gives an arguhent to show that if, for a single pfaffian equation,
there are points in every neighborhood of a given point which are not
"reachable" from the given point by curves satisfying the equation, the
equation is integrable. This result was generalized to systems of
pfaffians in [4]. There is a difficulty in applying these ideas to
pfaffian systems which are quite naturally associated with control systems
having control appearing linearly. (See § 1I.) The reason for this is that
usually the independent variable t appears explicitly in the pfaffian
system, hence its integral curves, which can be related back to solutions

of the control system, and are used to connect neighboring points to a



given point, mmst have t parametrized as t(6”), a monotone funciion of o ,
This is not the case in the proofs in [3] and [#], and with this restrictionm,
in general the results of these papers are no longer valid.

The relation between singular problems and controllability arises
quite naturally from the pfaffian approach and can be anticipated from
results obtained by LaSalle in [5]. In § II we define the concept of a
totally singular arec, i.e., an arc satisfying the differential constraining
equations; for which there exists an adjoint vector such that the maximum
principle yields no information as to the optimality of any of the com-
ponents of the control along this arc. In particular, if the system
vere linear and admitted mo totally singular arc, the system would be
proper in the sense of LaSalle [5] and completely controllable in the
sense of Kalman [6]. Even if the controls are merely restricted to be
X, 5 (Lebesgue square integrable) functions, it is shown that totally singu-
lar arcs can exist and comprise some or all of the boundary of the attain-
able set; thereby being optimal trajectories for certain time optimal
control problems. These are also precisely the arcs along which the system
need not be locally controllable, i.e., if we assume initial data x, given
at time to, there may exist points in every state space neighborhood of a
point qg"(tl) of a totally singular arc (p", which are not attainable in
time t, > to by trajectories of the system with5€ controls. Here (Pv

1

denotes the solution of the system with comntrol v. Precisely, if for every

t, > t_ there exist points in every state space neighborhood of (Fv(tl),




which are not attainable with ;fz control in time t,, the arc (p" is totally

1
singular. However it is shown by example that there do exist totally

singular arcs about which the system is locally controllable.

§ I. COMPLETE CONTROLLABILITY FOR LINEAR AND MILDLY NONLINEAR SYSTEMS

Throughout this section H will denote an nxr matrix valued function

of t, which is in5€2 [to’ tl] for any given finite t >t . Controls

1

will be f y vector valued functions, We begin with the following basic

2

Lemma.

Lemma I.1 A necessary and sufficient condition that there exist an

rxn matrix valued function V(t) in 562 [to’ tlj y such that for some

>t
o

t
1
L, > to’j H(T )V(T )dT is non-singular, is that for some ty
t

(o]

t
1
L H(T)HT (T)AT is non-singular,

o
Proof Sufficiency is immediate by choosing V(T ) = HT(T). To show

t
necessity assume there exist V, t, > t_,such that f 1 H(T V(T )aT is
T t
non-singular, but f H(T)E(T)aT is singular for all ¥>t°, in
t

particular 1 = tlo © Thisg implies there exists a constant vector ¢ +# O

t

1

such that c(f H(T)HT(T )dT) - 0, and since H(T)HT(T) is positive
t

(o]

semi-definite, we obtain cH(t) = O almost everywhere in [to’ tl] « Thus



%
1

f H(T V(T )aT = O which contradicts the non-singularity of
t

o

!
| arwemar.

t
o

We next consider the system
(1-1)  %(8) - Bu(e) , x(t)-x, w€ K (v, 4]

Define
!
T
Mt , t))= f B(T)E(T)aT .
t
o
Theorem I.1 A necessary and sufficient condition for the system (1-1)
to be completely controllable at to is that there exists tl > to such
that M(to, tl) is non-singular.
Proof: (Sufficiency) Let X be any given point in E, Euclidean n

space. We will show X is attainable from x  at time t,. Indeed pick

t

u(t) = H(t) § , §€ E'. We desire X = x(t;) = x(t_) +(j ! KT )HT(T)dT)§
or £-u (s ,t) (X - x(t)). o

(Necessity). Assume H(to, tl) is singular for all t, >+t . This
implies (see proof of lemma I.l) that there exists a constant vector
c# O such that ¢ H(t) =0 p.p. Since x, is arbitrary, let it be such
that ¢ » x, = 0. We will show the point ¢ i: not attainable from X e
Indeed suppose for some u and t,; ¢ = x_ +f 1 H(T )u(T)aT . Then

t
o

-k .




t
1l
Ce = "c”2 =Co X + cf H(T)a(T)aT = 0, a contradiction to
t

[¢]
the fact that c 0. |§

Corollary I,1 (Kalman) The linear system

(1-2)  x(t) = A(t)x(t) + H(t)u(t) , x(t,) = x

is completely controllable at to if and only if
1 T P
j § (to,T)H(T YA (T) § (to,T)dT is non-singular for some t

t
o

1:> to'

Here § (t,T ) denotes a fundamental solution of the homogeneous system

x(t) = A(t) x(t).

Proofs Make the transformation y(t) = § -1(1:, to) x(t). Then x

satisfies (1-2) if an only if y satisfies

(1-3)  3(¢) = B (¢ ,¢t) E(t)u(t), 3(t)) = x.

(Note B (t, t) =8 (4, t ).) From the transformation, it
follows that the system (1-2) is completely controllable if and only if
the system (1-3) is completely controllable, i.e., from theorem I.1 that

there exists a t1> to such that

%

1
L ¢ (tooT) B(T) E(T)§" (tO,T)dT is non-singular. i}

(o)



Some special results for nonlinear systems

We next consider the nonlinear system

(1-4)  x(t) = e(t, x(t) + K(thu(t),  x(s)=x,

with the assumptions: i) ‘gd(t,x)lﬁ My j =1, 2, coey Ne

11) | (t,x) - (¢, D|<m |x-%F], 3 =1, 2, coey n 1ii) g is

continuous as a function of t for each x.
t

hgain let M(t ) = ft " RTENT )T
o

Theorem I.2 A sufficient condition that the set of points attainable
by trajectories of the system (1-4) with sz control be all of E® is
that M(to, tl) be non-singular for some t,> % .
Remark Rather than state the theorem in this manner, one might con-
sider merely saying that the system (1-4) is completely controllable at
to. However, this notion has not been defined for nonlinear systems, and
it does not seem reasonable to this author to define it in such a global
fashion for these systems.

Proof For arbitrary u, (1-4#) has a solution designated Lpu which

satisfies

] t
- (t)=x_ + T, T + T T.
(1-5) Y8 =x, L T @7 DAT + BT (T )a

t
o V]

Let X be any given point in EY. We desire a control such that for some

point finite t,> ¢ (P (t;) =X It suffices to consider controls which




come from a finite dimensional subspace of 5(2, in particular the controls
considered will be of the form u(t) = HT(t) § vhere § € E®. Hence the
notation (P§ rather than l.fu will be used.

Define a mapping e EP—=E" as follows:

t
1 ¢
Let K (g):.:_ T, (P (T))AT , and define
to .
&'(g)z it , t) [i - o((g) -x ] From (1-5) it follows that
o? "1 ol*
a fized point of F will yield a value § such that (> (t,) = .

It is well known that with the conditions imposed on g [7, th, T.4 -
Chapter I] ’ (,o is a continuous function of § in the topology C[to, tl]’
i.e., the topology induced by the supremum norm. Thus 0((§ ) is a continuous
function of § s and 8718 a continuous function of § .

We next show that there exists a K such that “§“ < K——-u&/(g )" < K.

n -1 .
Letting "§" = Z l§il s and "M " be any matrix norm, since Ig‘)lgn,
i=1
for any §, "0((§ )" < n(1;1 - to)M:
ner= I, ol (131 ..
Letting K = || M (t, tl)" = I+ nM(t) - %) + "xo " , it follows that
for any §, ”@’(g)“ < K, hence in particular & maps the ball
§ € % "f” < K} continuously into itself. Thus F has a fixed point. [}
Remark The result obtained in this theorem is not surprising in view of
theorem (I.1) and the boundedness condition on the vector g. Also the

condition M(to, tl) non-singular for some t, > to is much stronger than

1




it need be, For example, if we consider a linear system of the form (1-2)
and H(t) is a column vector with one component zero, then H(to,tl) is
singular for all tl > to, yet the system can certainly be completely

controllable.

§ Il. NONLINEAR SYSTEMS WITH LINEAR CONTROL; THE SINGULAR PROBLEM

In this section, we consider extending the notion of complete con-

trollability to systems of the form

(2-1) x(t) = g(t, x(t)) + B(t, x(t))u(t)

where g is an n-vector, H an nxr matrix, while u is an ECZ control vector.
It is assumed that g and H are Cl in all arguments. Throughout, the
stipulation 1< r < n is required to hold.

Let B(t, x) be a Cl, (n-T)xn matrix with rank (n-rank H) at each

point (t, x) in some domaim@, of interest, such that

(2-2)  B(t,x) H(t, x)=0 , (t, x)Et&.

Since r< n, we know that rank B >1 for all (t, x).

With the system (2-1), associate the pfaffian system

(2-3) B(t, x)dx - B(t, x) &t, x)dt = O,
%

Let b be an agrbitrary linear combination of the rows d” of B,

taken with Cl scalar valued coefficients 0<U (ty x), 1ce€0,



v(t, x) =Z °<U (%, x) by (t, x). Throughout, b will be used to
denote such a linear combination which is not identically zero.
Definition II.1 The pfaffian system (2-3) is integrable at the point
(t, x) if there exists a ¢! scalar valued function WY(t, x) and an

€ > 0 such that for some b,
\Vx(t, x) = b(t, x), \Vt(t, x) = -b(t, x) * g(t, x)
for t<t<t +€ , lx-;|<€.
Essentially this states that for some b,
(2-4) (%, x)dx - b(t, x) * g(t, x)dt

is an exact differential in a "neighborhood" of (t, x). It should be
noted that any integrating factor can be included in the coefficients
of the linear combination of the rows b 1% .

The notion of integrability of a pfaffian system is, of course,
related to the property of completencess of an associated system of partial
differential equations. To show the relation, let C(x), x € E%, be a
smooth (n-r)xn matrix, and K(x) a smooth nxr matrix, both of maximum

rank, such that C(x)K(x)= 0. With the pfaffian system

(2-4) c(x)dx = 0

we associate the system of partial differential equations KT(x) -%%’5)- = 0.




Each row ki of KT can be considered as defining a vector field Xi which
locally generates a one parameter semi group of diffeomorphisms, {Ti(t)},
see for example [8, Pe 10]. In turn, such a semi ‘group determines a
vector field., If for each i, J = 1, 2, eee, r and for all arbitrarily
small fixed T, the vector field determined by {T j(T ) T, (t) Tj(-T)}

is linearly dependent on the fields Xi, the system of partial differential
equations is said to be complete. If it is not complete, the number m of
linearly independent fields formed in this manmer is called the index of
both the pfaffian system and the associated partial differential equation
system [4].

From the results in ih], it easily follows that the pfaffian system
(2-4) ig integrable (definition II,1) if and only if the index m is such
that m+r <n. If the index m is such that m#r = n, Chow [#] shows that
there is a neighborhood of a point x°€'En such that all points in this
neighborhood are attainable by curves satisfying (2-5). From the view-
point of local controllability for a control system, we can interpret this

as follows. If the pfaffian system associated with the control system

(2-5)  x(%) = K(x(8))u(t) x(t) - x,

has index m, where K is a continuous nxr matrix function of x €&

with constant rank r, and m+r = n, then every point in some neighborhood

of x is attainable by trajectories of (2-5) with measurable controls.

Indeed, since all points in some neighborhood of x  are attainable by

- 10 -




absolutely contimuous curves satisfying C(x,(t)) x(t) = O almost every-
where, we must only show that such a curve also satisfies (2-5) for some
control u. But C(x(t)) x(t) = 0=>x(t) is a linear combination of the
columns of K(x(t)), since CK=0. Thus there exists u(t) such that
x(t) = K(x(t))u(t) for almost all t. Since K has rank r, it has a con-
tinnous left inverse on its range, from which it follows that u is
measurable.
Before stating an explicit criterion for complete controllability of
a system of the form (2-1) one may asks What should one expect the
definition to yield? This can presently be answered as follows. Since
the definition should extend that given for a linear system of the form
(1-2) which is a special case of (2-1), one expectss
a) If g%, x) = a(t)x, H(t, x) = H(t), then the criterion which
defines complete controllablllty at £ for (I1.1) should be
equivalent with the conditionf [] (t , t)H(t)H (t) Q (t , t)dt

O

non-singular for some %, > to, as given in corollary Il.l.

1
b) There should be a geometric interpretation of the condition,
€eZey wWhat points are attainable from the initial point in finite
time? In the linear system there were global attainability
results, i.e., any point could be attained from the initial
point via a trajectory of the system. In the nonlinear problem,

one would expect at most local results of this nature.

- 1] -




The approach will be to state a criterion for complete control-
lability of (2-1) which we will show satisfies a). We then use this
criterion to try to establisl{; a geometric interpretation as mentioned
in b). Of course, how the Aefinition of complete controllability should
be extended is somewhat a matter of personal opinion.

Definition II.2 The system (2-1) is completely controllable at

(T, 3) €a9 if the associated pfaffian system (2-2) is not integrable at
(%, x).

It will next be shown that this criterion is equivalent to the con-
dition given in corollary 1.l for the special case of the linear system
(1-2). In this case it suffices to take B = B(t) in forming the pfaffian
system equivalent to (2-3). Also, in taking the linear combination of the
rows of B to form the single pfaffisn as in (2-4), we can consider the
scalar functions D(U as function of only t. Indeed we must only show

that if the pfaffian form

(2-6) b(t)dx - b(t) A(t)x dt

has an integrating factor, then this integrating factor, denoted by /( ’
can be taken as a function of only t. To obtain this, suppose /'[((t, x)

is such that /z(t, x) b(t)dx -/T(t, x)b(t)A(t)x dt is an exact

differential. 'l‘hern/[('x bt - Tix bJ= 0 for all i, J =1y 25 eeey ny; and
3 i

/'itb +/721°> = -/}x bAx -/Zb A. Define/,((t) =/f((t, 0), noting that for

- 12 -




the linear system )= (t,00) x E" which implies (%, 0)600 for t >t .
It follows thatl/((t) is also an integrating factor.

Since it is sufficient to consider both /( and the o(v as functions of
only t, there is no loss of generality in considering that if the pfaffian

systiem

(2=7) B(t)dx - B(t) A(t)x dt = O

associated with (1-2) is integrable, then (2-6) is an exact differential.

Since x appears linearly, definition II.l simplifies for such systems,

and is: The pfaffian system (2-7) is integrable at the point % if there
existis a C:l scalar valued function w (t, x) and an € > 0 such that for

some b,

V(8 x) = b(8), W, (¢, x) = -b(t) a(¢)x

fort<t<t + €. (Note: Under the assumptions on B and H, \th

and \Vtx exist and are equal).

Defines:

*
Wty ) =ft B(t,, DE(HE (1) § (s, t)as .
(o]

Then corollary I.1 states that the system (1-2) is completely controllable
at t  if and only if there exists a t, >t such that W(to, tl) is non-
singular.

Remark 1. If A and H are constant matrices, Kalman [l] shows that this

condition is equivalent to the condition: rank [A, AH,... An-lﬁ] = N.

- 13 -



Remark 2. While the above condition given for the constant coefficient
case can be directly checked, W(to, tl) depends on knowledge of a
fundamental solution §(t, to) which is not always easily obtainable.
Remark 3. It is easily seen that w(to, tl) is a positive semi-definite
matrix. Thus if U(to,tl) is non-singular, W(to, t) is non-singular for
all t =2 tl.

The main purpose of this section will be to show that the condition
11.2 for complete controllability of (1-2) is equivalent to w(to, tl) being
non-singular for some t1> to. This condition has the advantage of not
depending on knowledge of a fundamental solution.

Before stating the main theorem, a simple computation yields,

for t°< t <t2,

1
(b, t)) = Wit , t)) + 85, 4)) (s, t,) B (s, ).

Thus if H(tl, t2) is non-singular (positive definitive) it follows that
w(to, t2) is also non-singular (positive definite). The reverse im-

plication need not be true.

Theorem II.1 A necessary and sufficient condition that W(tl, t2) be non-

singular for all t, > t, is that the pfaffian (2-7) be not integrable at

1
tl.
For ease in both using and proving this theorem, we list the implications

and their contrapositives.
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I.A Necessary condition: V(tl, t2) non-singular for all t, >t

—==> pfaffian (2-7) is not integrable at $.

I.B4 Necessary; contrapositive: Pfaffian (2-7) integrable at t, ==

V(tl, tz) is singular for some t,> t,.
I.C Sufficient conditions Pfaffian (2-7) not integrable at tl

====$>w(t1, t2) is non-singular for all t,>> t,.

I.D Sufficient; contrapositives w(tl, t2) singular for some t,>t

1
——>> pfaffian (2-7) is integrable at t.
Proof: (We shall prove I.B and I.D)

Assume the pfaffian (2-7) is integrable at t Then there is

10
a vector b, which is a linear combination of the rows of B, and an

€ > 0 such that b(t) = -b(t)A(t), for t,< t< t, +€ . Let

1l
(t, t)); B(t), +;) = I, be the fundamental solution of x = A(t) x.
Then the vector b admits the representation b(t) = ¢ §_1 (¢, tl) =
c Q(tl, t) for some constant vector c. Let h(t) be any column of H(t).
Then 0 = b(t)h(t) = ¢ Q(tl, t) b(t). Since h was an arbitrary column
of H, and W is positive semi-definite, we have c W(tl, t) ¢’ = 0 for
t;< t <t) +€ showing that there exists a t,>t, such that w(tl, t2)
is singular.

Assume, next, that W(tl, t2) is singular for some t,> t,. From
remark 3, it follows that w(tl, t) is singular for all < t<t,.

This implies there exists a vector c(tz) such that c(tz)W(tl, tz)cT(tz) = 0.
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Since the integrand of the integral defining W(tl, t2) is continuous,
T T T — ‘
c(tz) Q(tl, t)H(t)H (¢) & (tl, t)e (tz) =0 for t, < t< 4,

It follows that 0= o(t,) §(t,, +)H(t) = o(t,) (¢, +))E(t), thus b

defined by b(t) = c(tz) Q-l(t, tl) is an admissible vector in the sense

that b(t) H(t) = 0, i.e.y, b lies in the subspace spanned by the rows of B.
Define the scalar valued function (t,x) = c(tz) Q-l(t, tl)x.

Then \Vx(t, x) = b(t), \Vt(t, x) = -b(t) A(t)x for t, < t < t, showing

2
that the pfaffain (2-7) is integrable at t,. B

The following illustrates the advantage of a definition of complete
controllsbility for linear systems which does not depend on knowledge of

a fundamental solution.

It is known that an n dimensional system which is formed from a

single n® order equation having constant coefficients and the control

a8 forcing term is completely controllable., We next show that this is

also true for time varying systems of the form

£ (5) « a)(6) £ D(8) + w4 2 (8) x(2) = ulb).

Specifically we shall show that for any to, the associated pfaffian is
not integrable implying W(to, tl) is non-singular for all t, >t .
We take the equivalent linear system of the form

y(t) = A(t) y(t) + h(t) u(t) where

0 1 O.aovo. O] [0 ]
0 0 l. . o
A(t) = | - <., : ; h(t) = .
o * » 0 °
0 0 ‘1 0
"ﬂ.np - n-1 ? e o o o ¢ “'3.1; _l 1




One can choose B(t) as the (n-1)xn matrix

1 0 0 «.. 0 ©
B(t) = 0 1 0 ... 0 O
0 0 0 .01 O .

The pfaffian system equivalent to (2-7) is then

(2-8) dx, - x, dt = 0
dxz-deta()
dx_ .- x dt = 0.
n-1 n

If (2-8) were to be integrable there must exist scalar valued functions

5(j(t), not all zero, so that the single pfaffian

n-1 n-1
Z o(j(t) dx; + 0 dx - Z o(j(t) Xy, 4t
j=1 j=1

is an exact differential. But this would imply c(j(t) =0y J =1y 25 eeny

(n-1), which shows (2-8) is not integrable for any te
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Geometric Interpretation, Local Controllability, and the Singular Problem

By associated a pfaffian system of the form (2-3) with the system (2-1),
it is conspicuous that the siress is taken away from the functional form of
the elements of the matrix H, and placed only on what the range of H(t, x),
considered as an operator on Er, is. This obviously should be the case
when controls are required to be only 5(; functions. |

In [9], Markus and Lee consider a system of the form x = f(x, u),
fe 01 in E® x Q ’ vhereQa. compact set contained in E® with O in its
interior, is the range set of the control. Assuming £(0, 0) = O and
letting A = fx(o, 0), H = fn(O, 0), it is shown that if the linear system
; = Ax + Hu is completely controllable, then the set of points from which
the origin can be reached in finite time by trajectories of x = f(x, u),
is an open connected set containing the origin. Kalman [10] pointed out
that a similar result can be obtained for a system of the form X = £f(t, x,u)
by assuming the linear approximation is completely controllable in terms of
the criterion given in corollary I.1.

The system

(2-9)  x(t) = £(t, x(8), u(¥)) x(t) = x,

. 2 . .
where x is an n vector, f is a C~ vector valued function and u is a r vector

valued measurable control, is said to be locally controllable along a

v
solution gp corresponding to control v if for some t1:> to all points in
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some state space (n dimensional) neighborhood of (fgv (tl) are attainable in
time t, by trajectories of (2-9) vith admissible control.

It would be somewhat falacious to say that a time dependent system
is locally controllable, say at the origin, if all points in a neighborhood

of the origin in state space are attainable by trajectories of the system

in finite time. To see this, we consider the following example of G. Haynes.

Example 13
il ==X, + (cos t) u ’ x(0) = O, lu(t)l <1
x, = xl+(sint)u.

An integral of the motion is seen to be x, gsin t - x, cos t = 0, which one

can picture as a rotating (with time) line in X,y X, space. As t varies
from 0 to 277 y all points of E2 are swept out by this line. Now multiply

the first equation by cost , the second by sin t and one obtains by adding;

d .
it (xl cos t + x, sin t) =u or

2

t
x, cos t +x, sint = f w(T) d7T . Combining this with the
0

integral of the motion gives
£ 2

xlg(t) + x22(t) - j u(7T) aT implying that as time increases, the
0

two dimensional neightorhoods of the origin of E2 which are attainable

also increase,
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Since all solutions lie on a surface in (t, x) space, one would
hardly feel that the system should be termed locally controllable and is
not locally controllable by the definition given above.

We next proceed with an analysis, similar to that used in the papers
[9] and [10], to examine local controllability about a given trajectory of
the system (2-1). Let x(to) = 0 be initial data for this system v an
arbitrary 0\62 control and (fv the corresponding solution. Let u(t; § ),
§€ E', be a family of controls such that u(t; 0) = v(t), up exists, and

denote x( . ,_f) as the response to u( . ,f). Then x( . ,§) satisfies

t
x(t;§>§ft [gvr, (T3€)) + KT ,=(T5 £)) umg’)]

o
rt

rg 0 [g,(r, F(TY) + 5 (T, <,o'(r>)v(r)] £¢ (T4 0)

+ H(T9 (PV(T)) u§ (T) O)dT

r

v

i

where Hxv is an nxn matrix with i j® element Z Hx vY .
y-1

For each t 2 t , we view x(t; g) as a mapping §——x with

O—-—(P Y(t). Let Z(t; (P , ) denote the Jacobian matrix x§ (t; 0).

We haves If for some t, u § s Z(ts LD s uc) is non-singular, the attainable

set at t contains a neighborhood of the point ‘P (t). Let P(t, t ) be a

fundamental solution matrix of the system

x(t) = [g(t:(p"()) + B (5, F()v(t) ] x(¢). then
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t
2(ts 0 u§)s-jt (¢, T) H(T,c,o'(T))ug (T;0)aT .

From lemma I.l and corollary I.l we have
Theorem I1I.2 (Kalman) A necessary and sufficient condition that there
exist an rxm matrix ng such that Z(tl; (Pv, u§) is non-singular for

some t1> to is that the linear system

7(£) = [&ts 7 () + B (4,457(£))v(t)] 3() + H(t, () )u()
is completely controllable.
In terms of the pfaffian approach the equivalent theorem is
Theorem II.3 A necessary and sufficient condition that there exist an
. rxn matrix ug such that Z(tl, (Pv, u§) is non-singular for some t, >t ,

is that the pfaffian system B(t,cp"(t))dx - B(t, ga‘(t))
[gx(t, (f)v(t)) + Hx(t? (Pv(t) )v(t)] x dt = O be non-integrable, for some

tlz to, i.eo’ that

(2-10)  u(ts P(8))ax - b, PT(8) [g(t, PT(8)) + B (ks F1)) w(8))] = at

is not and exact differential for any b which is a linear combination of
the rows of B.

The same method, when applied to a system of the form (2-9) yields

Theorem II,3' A sufficient condition that there exists a tlz to such that

all points in some state space neighborhood of gav(tz) for all t2> tl are
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attainable in time t, by trajectories of (2-9) with admissible controls,

is that there exists a tlgg to such that the pfaffian system

B(ts v)ay - B(t3 v) £_(t, ' (t), v(t))y at = 0

is not integrable at tl’ [The notation B(t; v) is used to denote the
dependence of B on the reference trajectory, specifically
\{
B(t5 v) £,(+, P7(5), ¥(8)) = 0.]
It is interesting at this point to see the implications of the
assumption that (2-10) is an exact differential. This implies and is

implied by

(2-1) & v(t, ()= (e, 7(0) [ gt 7 (6) + B (6, TN

which can be recognized as the so-called adjoint system of the maximum
principle [11] approach to the time optimal problem for system (2-1).
It should be noted that if b(t,(ﬁ'(t)) satisfies (2-11), then it is an
adjoint vector which is orthogonal to all of the columns of H. Since the
maximum principle (for control components bounded by one in absolute value)
implies: choose ud(t) = sgn Zn bi(t, YW(£))EN (¢, ©"(t)); 1n this case
it yields no information. =

I shall designate such a problem as one which admits a totally
singular arc va, iceo, where the maximum principle yields no information

in the time optimal problem, for any components of the optimal control.

The arc would be singular, but not totally singular, if there is an adjoint
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vector orthogonal to some, but not all columns of H,
Theorem I1I.4 The pfaffian form (2-10) is an exact differential if and
only if 110’ is a totally singular arc.

Proof: It has been shown above that if (2-10) is an exact differential,
then the vector b satisfies (2-11), which implies (Pv is a totally singular
arc.

If (.'0v is a totally singular arc, there exists a vector p(t) such

that 1) p(t) H(t, p"(t)) = 0 and 3i) B(t) = -p(t)

[gx(t, LFv(t)) + Hx(t, (Pv(t)) v(t)] « From i) we conclude that p(t) is
a linear combination of the rows of B(t, (.F'(t)), while II) implies that
this linear combination, (2-10), is an exact differentia.l.l

To summarige; LF' not a totally singular arc implies the pfaffian
form (2-10) is not an exact differential which implies there exist
> t, and u§ such that 2(%, (Fv, u§) is non-singular and the attainable
set at time t contains a neighborhood of the point (Pv(¥). The contra-
positive of this statement provides an interesting characterization of
totally singular arcs, i.e., if for every t1> to there exist points in
every state space neighborhood of (Pv(tl) which are not attainable in time
t, with 0\62 controls, the arc \'Ov is totally singular. On the other hand,

as will be shown by example; a totally singular arc can remain on the

boundary of the attainable set, and thus provide a time optimal trajectory.

Theorem II.5 If the system (2-1) is not completely controllable at to,
Z(t, Pv, ug) is singular for all t = to’ u§ and all reference trajec-

tories (Pv, i.e., every trajectory (Fv is totally singular,
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Proof: Any vector b, which is a linear combination of the rows of

B, satisfies b(t, x)H(t, x)=0. Thus for any vector v(t),

2 [b(t, DE(, Dv(8)] = 0, or v(t) B¢, 2b_(t, x) =

-b(t, x)E (t, x)v(t). Evaluating this identity at the point (t, (P"(t)),

substituting into (2-11) and expanding of the left side yields

(2-12)  b(t, 7 (£)) + B(t, ¢7(£))g (%, (P(2))+alt, AON I CHPVACIE

()BT (£, (7(2)) [b (t, () - v (e, 071D ] .

This identity provides a necessary and sufficient condition that (2-10)
be an exact differential, i.e., that ‘07 be totally singular.

Fow assume the system (2-1) is not completely controllable. This
means that for some b; a linear combination of the rows of B, the pffafian

form b(t, x)dx -b(t, x)g(t, x)dt is an exact differential, or

b, (t, x)=-b(t, x) g (¢, x) -a(t, x) b_"(t, x)

T
bx(t,x)':?- b_ (t, x)=0,

Evaluating these two identities at (t,qﬁv(t)) for an arbitrary control‘v
shows that (2-12) is satisfied, hence every trajectory’(fﬁkis totally
singular,

A conjecture which one might be tempted to make is that if the
system (2-1) is completely controllable, it admits no totally singular

arcs. This is not true, as the following example from [2] shows,
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Example II.1
x, u xl(O) =1

X, =-X_+1 xz(o)ao.

Por the time optimal problem of reaching the point (2, 0), it is shown
in [2] that u = 0 is the optimal control, if the restriction lu(t)l <1
is imposed, and it easily follows that this is also optimal in the class
of Xg controls,

For this problem, one can use for the matrix B, the single vector

» = (1, 112 xz). The associated pffafian equation is

2 2,2
dx, + x;° x, dx, + x; (x2-1)dt=o.

2. 2 2
Let x = (xl, xz), a(x) = (1, x, "X, X (12 - 1)) Then (curl a(x)).
a(x) - 2 x, x,° 4 0, tms the pfaffian is not integrable.
The optimal path from the point (1, 0) to (e, 0), A>1, is ob-
tained with control u = 0, and is

1
0 i=-t . g . .
© (%) This is a totally singular arc. To show this,
0 o

we note b(tptﬁoo(t)) = (1, 0).

508, (p°(#))ax =b(t, (F(+)) [ &, (6, (2(£)) + B (£,40°(+)) - 0] x at

2x

- - i
= dx) + 0 dx, - == dt.
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-2 x
Let a(x, t) = (1, O, —1_71 )o Then (curl a). a = O which implies the
2 xl

. s BN
L+ 0dx, - === dt = 0 is integrable, and (p° is a totally

singular arc. Here the arc 990 is on the boundary of the attainable set.

pfaffian dx

It should be stressed at this point that it has not been shown that
if for some control v, the matrix Z(t, @", u§) is singular for all t 2t ,
andtlg-then sufficiently small n neighborhoods of a point 99v(t) con-
tain points not attainable in time t, from initial data O given at to.
In fact it will next be shown (Example II.2) that this is not the case. To
do this we mmst produce a time optimal problem which posseses a totally
singular arc which yields neither a maximum or minimam. Since the arc is
totally singular, Theorem II.4 shows that one cannot conclude that the
system is locally controllable along this arc by considering the linearized
equations as in Theorem II.2, However the use of theorem II.3' on certain
arcs which differ from the singular arc but have some points in common with
it, will establish the local controllability.

We consider control systems of the form studied in [2], i.e.y

(2-13) x,(t) = a;(x(t)) + B (x(¢)) u(s) x(0) = x_

x,(t) = A,(x(%)) + By(x(t)) u() [a(0)| < 1.
We assume that in some region of interest xpof state space,
(2-14) D(x) = -Bz(x) Al(x) + Bl(x) Az(x) £0

and that Aig Bi, i = 1, 7 are cl in /0.
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The pfaffian system associated with (2-13) is the single pfaffian

equation
(2-15) Bz(x) dx, - Bl(x) dx, + A(x) dt = 0.

Since O (x) £ 0 and multiplication by a factor does not change inte-

grability, this can be rewritten as

B,(x) B,(x)
(2-16) Alx dxl—mdxzq»dtzo.
Bz(x) Bl(x)

Let Z(x) = NORRNOK 1| 3 then a necessary and sufficient

condition that the pfaffian (2-16) be integrable at a point (t, x) is

that Z(x)  curl 2(x) = O in a neighborhood of x. Computing yields

= a Bl(x) 3 B2(x) = !
z(x) ¢ curl Z(x) = - 55 (A(x)> + 55 <A(x) = .- Wwx),

where W(x) (using the notation of [2]) can be directly computed from

the right sides of the differential equations (2-13).
Let v be a continuous control (this is sufficient continuity when
the control appears linearly) satisfying |v(t)| <1, and let (Pv be the

corresponding trajectory of (2-13).

Theorem 11,6 If for some 6=t ('Ov(tl) is not a zero of (U, then

for any t,>> t; all points in some state space neighborhood of Spv(tz)

1
are attainable by trajectories of (2-13), in time t,s with admissible

controls.
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Proofs The variational equation for the system (2-13) about the

trajectory (Pv is given by
38) = [4,(@7()) + v(5) BLE ()] 3(2) + BT (£)) u(t)

B
where A = <A1) s B =< 1> . The pfaffian equivalent to (2-10)

4 B,

for this variational equation is
(2-17) B,(p"(+))ay;- B (G (+))ay, + (B,(e"(8)),B,("(+))) [ (7 (0)) +

v(t) Bx(qd'(t))] y dt = O,

A sufficient condition that (2-17) be not integrable at t, is that

(2-18) & (Bz(go"(t)),nl(tpv(t)))lt BT E)) B (T () [a ("t
= 1 ©

v(t;) Bx(gﬂy(tl))] , which is implied
bya)(lpv(t)) #£ O as can be shown by a straightforward calculation.
[In terms of Theorem II.%4, (2-18) states that v(tl) is not a point of a
singular arc. In [2', P& 97] it is shown that for systems of this type
singular arcs are characterized by the fact that (Dis zero along them..
It follows that if Sov(tl) is not a zero of L&), then it is not a point of
a singular arc, hence (2-;7) is not integrable and the conclusion of the

theorem follows.] .
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It should be stressed that the integrability of (2-16) requires
W (x) = Z(x) * curl Z(x) to be zero in a neighborhood of a point, while
Theorem II.6 deals only with the value of W at a point. It is possible,
Example II.1, to have the pfaffian (2-16) not integrable at a point (%, x)
at which W (X) = 0, and yet have a trajectory (Pv such that L'pv(-t-) =X
and the system is not locally controllable about Pv.

We next give the example of a problem which is locally controllable

along a totally singular arc,

Example II.2 (A singular arc Lpo(t) such that all points in a neighborhood
of (‘0°(t1) are attainable in time t,.)

Consider the system

x, =u lu(®)] <1

° 2
u

x, =1+x,x x(0) = 0

Then A(x) = 1, w(x) = xlz, hence if we were to consider the time

optimal problem of reaching the final point xf(O, %), the Greens theorem

approach [ZJ, yields the following

X

L,ol (0,%)

Figure 1
(P-l,
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the optimal arc being shown by the arrows. There is an arc along which
=0, ice., x; = 0, and while this can be attained with the control
u =0 it yields neither a maximum or minimum to the time optimal problem.

This arc we designate as ('00;

0

‘fo(t) LANO
(p2° () =t.

It is easily checked that the variational equation along (790 is not
completely controllable,

Now consider a relation x, = k1 sin k2 X, kl, k2
It will be shown that for kl sufficiently small, there exists a unique

>0 with k2>&Tl'.

admissible continuous control u(t) with trajectory (Pu which has

{(xl, 12)3 x, = k, sin k, x,, 1220} as its track.

From the Greens theorem approach [ 2 ] and the symmetry of w(x) about

the line Xy= 0, the parametrization of (pu must be such that the even

numbered crossings of the x, axis, counting only crossings which occur for

2

x, > 0, one mst have

(Pl‘{l- ( 2nkTZ ) =0 = ‘-Plo ( QHZT ) IR

2

u n n o nTT
of (el 2l e (all

2T <1/2. It will
k2
be shown that there is local controllability along (Pu, and since

We will be interested in the case n = 1, so that
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LP“ ( gk_Tl'__ ) = (10° ( &kZI )» it will follow that a neighborhood of
2

(_Po ( 27T ) is attainable in time ———— 27T
%2 k,

First we will show that for k1 sufficiently small, there is a

unique continuous u which leads to a trajectory Sou having

{(xl, 12)3 x, = k; sin k, x,, 122_0} as its track. Differentiation

of the track relation with respect to t yields
xl(t) = k; k, |cos k, xz(t)] xz(t).

Substitution from the system equations leaves

o (2-19)  u(t) = Kk, [cos kzxz(t)] [1 + xZ(t)xlz(t)u(t)] .

For any control u,
rt
x)(8) =) (T )T

t

x,(t) = exp fo o(T) (fot u(0">d°’>2”] fo

t

exp -jru(d‘) fTu(K)d zdb/ aT .

0 0

Substituting these in (2-19) yields an expression of the form
u(t) = kl(;}?u)(t)

where the definition of the nonlinear operator 6—7-' is obvious. Let
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C [0, %] denote the space of continuous vector valued functiom¢u on the
interval [0, ﬁ:], with the supremum norm, and ﬁ% the closed ball of radius
% in this space. It is easily shown that for kl sufficiently small but
positive, u € B}é:klg’ u € B}é, and klgis a contracting map. Thus
kla’ has a unique fixed point in 8%, call this point W, Then LPE is not
a singular trajectory, since k, positive implies u(t) # 0, and LP; has the
desired track.

1
hence not a zero of (). From Theorem II.6 it follows that all points in

Now for 0 < t.< %I ’ (Pu(tl) is not a point of the singular arc,
2

some neighborhood of ('oa(tz), for any t,> t; are attainable in time t, by
trajectories with admissible controls, hence this is true for t2 = giz—r-.

To determine local controllability along (PE by use of the funda.iental
solution of the variational equation about this trajectory would be a
virtually impossible task.

In concluding, it should be noted that totally singular arcs were de-
fined with no mention made of transversality conditions. It is possible to
use these conditione, in very special cases, to rule out the existence of

singular arcs in the coptimal sirategy. Also, for a time optimal problem

for a system of the form

(2-20)  x(t) = g(x(t)) + B(x(t))u(t)

the maximum principle yields the fact that the Hamiltonian is constant

along the optimal path. We shall show that this cannot be used to rule
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out totally singular arcs, since such arcs automatically satisfy the con-
dition even though the Hamiltonian is seemingly a function of time along
them,

For the system (2-20) with any given control u(t) we define the

Hamiltonian for the time optimal problem as

H(t, x, p)=p - &(x) + p o Hx) u(t) + L.

A necessary condition is that Nis a constant along the optimal tra-
jectory, it need not be s0 on a non-optimal trajectory. Define the ad-

joint system as

(2-21)  p(t) = -p(t) & (x,(t)) -p(t) H_(x(t))u(s)

Theorem II.7 The Hamiltonian for the system (2-20) is constant along

any totally singular arc.

Proof: We defined a totally singular arc as an arc ('a“ which
satisfies (2-20) for which there exists and adjoint vector p(t) satisfying
(2-21) such that p(t)H(Pu(t))EO for a set of t values having positive
measure. Then

(2-22) 0 Wit GH(8)op(0)) = 35 [2(8) « &™) + 1] = pe® + Pisiu @
From (2-20) g'= (ﬁi“ - gik u -
From (2-21) p* giv . E’U -3, H]i[l; w . Substituting in (2-22)
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B Yk ] "Pyu

£ B (4, 05(8),0(8)) = iai[g&i“ e r [-i)y‘- p; B

O e A S CALC AT I

from the condition p(t)H( Pn(t)) = 0. [§
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III. THE EQUIVALENCE AND APPROXIMATION OF CONTROL PROBLEMS

INTRODUCTION TO SECTION III

In this section we will be concerned with the time optimal feed-

back control problem for an n vector system of the form

(-1 x(t) = £(t, x(t), u(t)) (; - _dﬁt))

where the control u is an r vector valued function with values in a
given set U. The major interest will be in feedback controls.

One of the difficulties in the theory of optimal feedback control is
the discontinuity of the control with respect to the state variables,
which the necessary condition termed the maximum principle, so often
shows to be the case. Letting H(t, x, p, u) = p- £(t, x, u) - 1;

u*(t, x, p) be so that H(t, x, p, u*(t, x, p)) = H(t, x, p, u) for

all u € U, and H*(t, x, p) = H(t, x, p, u*(t, x, p)), the Hamilton-
Jacobi equation approach [1] often leads to a partial differential
equation with discontinuous coefficients, while the Hamiltonian equations
of motion which describe the system (the characteristic equations of the

Hamilton-Jacobi equation) are of the form

L] ° B
(3-2) x = % H*(t, x, p) ’ p= - g}ﬂ‘(t, X, p).
The maximum principle of Pontriagin, for time optimal problems, assures
us that if u*(t) is an optimal control, x*(t) the corresponding optimal
trajectory, then there exists an absolutely continuous n vector p*(t),
not identically zero, such that H*(t,x*(t),p*(t)) = H(t,x*(t),p*(t),u*(t))
while x* and p* satisfy equations (3-2). The usual use of the maximum
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primciple proceeds, however, by attempting to generate candidates for an
optimal trajectory by solving a two point boundary value problem for the
system (3-2). Since u* may be discontinuous, the fundamental questions
of existence and uniqueness of golutions to these equations cannot easily
be answered.

An alternative would be to restrict the controls to be continuous,
or even Cl, (continuously differentiable) functions and attempt to gen-
erate within this class a sequence of controls which will in some sense
tend toward the optimal control. In doing this, however, one must
seemingly discard the maximum principle which is one of the most useful
tools for generating optimal controls, for it so often demands dis-
continuous controls.

The approach taken here is not to forcefully restrict the class of
approximating controls, but instead to generate a class of approximating
problems whose solutions will be continuous or Cl controls and will tend,
in a given sense; to the solution of the original problem.

For the system (3-1) let R(t, x) = if(t9 X, u): ue.U} . We shall
say that the time optimal problem for a system ; = g(t, x, v), v e&€Vis
equivalent to that for the system (3-1) if {g(t,x,v):v € V} = R(t, x) for
all (t,x) in some domain of interest. For given € > O we define the time
optimal problem for the system ;:= € (t, x, v), ve€V(€) to be an

€ -approximate equivalent problem to the time optimal problem for (3-1)

if 4 ({he (t,x,v):vev(e)} , R(t, x»< € for all (t,x) in the domain

of interest. Here d(Q,R) is the Hausdorff metric distance for sets in
E.

Intuitively equivalent problems have the same optimal trajectories (as

will be shown) while the optimal trajectories of € - approximate equivalent
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problems will be close (uniformly) to those of the original problem.

It will be shown that under appropriate conditions (essentially the
Fillipov existence conditions [2] ) the approximating problems can be
chosen in such a way that the corresponding feedback controls are con-
tinuous, or even of class cl. In certain casea this allows the Hamilton-
Jacobi theory, as derived in [1] » to be utilized for the construction
| of fields of optimal trajectories and optimal feedback controls.

Although we deal only with the time optimal problem, it should be

noted that for a problem of the form x'(T) = £(T, x(T), u(T)), with
T,

f
the functional to be minimized beingf ol(e, x(c), u(e))dc- where
%

the scalar valued function of satisfies (6, x, u) = b >0, the change

of independent variable

T
t(7T) = l ol(e~, x(0), u(c))do reduces the problem to an

(~]

equivalent time optimal problem for the system

=1
y(t) = [ OC(T(t),y(t),u(t))] £OT () ,5y(t),u(t)) = glt,y(t),ult)).

THE MAXIMIZATION OF p.r WITH r IN A STRICTLY CONVEX SET

Our motivation is to choose approximating problems for which the
maximum principle will yield smooth controls. Let r*(p) be the function
which maximizes the functional F(p,r) = p.r for fixed p e E°- {0} ’

r € R a given compact set in E:. We begin by examining conditions on
the set R which will insure that r* is smooth since it is a maximization

of this type which causes discontinuities in the control.
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Definition. If S is a set contained in E- (Euclidean n space) a support
hyperplane is a hyperplane M which lies on one side of S and SN\ M # ﬁ .

the empty set.

Definition. A convex set R contained in E° will be said to be strictly
convex if it contains more than one point, and every support hyperplane

has at most one point in common with R.
If R is a compact set in E® we denote its boundary by OR.

Lemma IIXI.l. If R is a strictl} convex set in En, then R has internal

(interior) points. (This result depends on finite dimensionality).

Proof Let rs T € R, r, Zr. , and Vl be the linear variety of

1l 1’
dimension one determined by these points. Let Hl be any hyperplane con-

taining V Since M, contains two points of R it is not a support plane

1° 1
and there exists a point r, € R, r, & Hlo Let V2 be the linear variety
determined by ros Ty and ry V2 has dimension two. Let H2 be a hyper-
plane containing Va. Again there is a point r3 € R, ry € Ha. We con-

tinue inductively getting at the (n-1)st step a linear variety vn-l of

dimension (n-1) determined by the points R A Then there

n-1°

exists a unique hyperplane Hn- containing Vn_ , and again a point

1 1

r, € R, r € M Since R is convex it contains the convex hull

n-1°

of the set of points Foo o oo 9 Ty and since the vectors r) =Ty

rz"rogooogr

n = T, are linearly independent, they determine an

n cell which has non void interiorol




Lemma III.2. Let R be a strictly convex, compact set in E. Then for any

fixed p € E® - 10} , the function F(p, » ) attains its maximum value at

a unique point r*(p) = r € oR.

Proof For any fixed p, F(p, *) is a continuous function on the compact
set R and hence attains its maximum there. Suppose the maximum is attained
at an interior point r_ € R. Let N(ro) be a neighborhood of r_ contained
in R. Then p °* T, is an interior point of the real interval pe. N(ro) =
ipo r: r € N(ro)} , contradicting the fact that F attains its maximum at
e

To show uniqueness, assume F(p, ® ) attains its maximum at T while
ry £ r belongs to R and F(p, rl) = F(p, ro)., Define
r(ol) = oLr  + (1 - a0 r,, - oo <ol <o . It follows that
F(p, r(ol)) = F(p, ro) for every such point r(ol). If for some ol ,

r(o() is an interior point of R, the argument of the previous paragraph
would show a contradiction to F(p, » ) attaining its maximum at T Thus
the one dimensional linear variety V = {o(ro + (l-oL)rl: - o=<ol =< oo}
does not intersect the interior of R, which is not empty by Lemma III.1.
By theorem 3.6~E [3] there exists a closed hyperplane M containing V such
that the interior of R lies strictly on one side of M. It follows that M
is a support plane for R, and since M contains more than one point of R,

this is a contradiction to the strict convexityol

Theorem III.1 Let R be a strictly convex, compact set in E®. Then the

function r*(p) (shown to be well defined in lemma III-2) is continuous.

Proof Suppose pn ———+ p. Since R is compact, some subsequence
of the sequence {r'(pn)} converges to a point of R, and there is no

loss of generality in assuming it is the original sequence, i.e.
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let r‘(pn)———-b ry- We suppose r*(p) = r, £ r, and seek a contradiction.

From the definitiom of r*, F(p, rz) = F(p, rl); let
F(p, r)) - Fp, r)) = $ =o0.
Since F is continuous there exists an N = 0 such that

|F(pn, ra) - F(p, r2ﬂ< S/h and |F(p, rl) - F(pn, r‘(pn)|< S/h

]

for n = N. Then F(pn, rz) - F(pn, r‘(pn)) = [F(p, rz) - F(p, rl)]

°

+ [F(pn, ra) - F(p, ra)] +,[F(p, rl) - F(pn, r‘(pn))]> /2 for

n =N, a contradiction to the definition of r‘(pn)..

We next examine when the function r*(p) is cl.

n ¥
Definition. For y € E®, |y| = {Z yiz } )
1

Lemma III.3. Let R be a strictly convex, compact set in ES which has a

unique outward unit normal n(r) at each point r€ ®dR. Then for fixed

p € E* - {0} , F(p, * ) achieves its maximum at the unique point

r, € OR such that n(ro) = p/lpl .

Proof Assume without loss of generality that zero is an interior

point of R.

1

For x € E°, let I(x) = {a: a=>0, a x €R} and define

(O(x) = inf. a. (o(x) is called the support function of R, or also the
a€I(x)

Minkowski functional. We note that if r, € OR and y is any vector, then

for a real scalar o = 0, oLy + To € dR

e(o(.yﬂ'o)

and for o sufficiently small, is in a neighborhood of e
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From lemma III.2, we know F(p, ) achieves its maximum at a unique
point on OR, let T, be the point. Let g(y, ro) = 1lim %‘ fdy+ To -r 1
ol f—+0 Le (d.y+ro) ° ]
Since OR has a unique outward normal at each point, g(y, ro) = -g(-y.ro).
Since p r, =pr forall re OR in a neighborhood of Tos it follows
that p » g(y, ro) =< O for all y. Assuming there exists y such that
p * &(y, ro) <-0 implies p «g(-y, ro) >0, a contradiction. Thus
pe&ly, ro) = 0 for all y, or a necessary condition that r, presents
F(p, * ) a maximum is that p be orthogonal to the support hyperplane at Te
Since R is strictly convex it is easily shown that there are exactly
two points which satisfy this necessary condition, one with outward
normal p/|p| giving F a maximum, the other with normal -p/|p| which

gives F a minimum, l

Definition. We say that a strictly convex, compact set R in E" has a

smooth boundary if there exists a unique outward unit normal n(r) € Cl

1

defined on OR. (Actually we consider n as a restriction of a C
function in a neighborhood of r € JR, see, for example, [b:] Pg. 27).

Theorem III.2. If R is a compact set in E® with smooth boundary having

positive Gaussian curvature at all points, then r*(p) € Cl.

Proof Since it is assumed that the unit normal to OR is of class Cl,
the Gaussian curvature is a continuous positive function on OR. But OR
is compact, thus the Gaussian curvature is bounded away from zero., From
theorem 5.5 [5 , PE- 35] it is easily followed that R is strictly convex.

From lemma III.3, we have thar r*(p) satisfies n(r*(p)) = p/|pl. Let

r, = r‘(po) be an arbitrary point on dR.
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The method will be to utilize the implicit function theorem on a
relation of the form g(r, p) = n(r) - p/Ipi .
1 n-1 X .
Let C g o o o o C be a local coordinate system for a neighborhood
of r, on OR. Then the inclusion map from d R—— E® determines n
slpoth fnnctions xl( Cl, © o o g rn—l), e o o xn( ¢1' e o o g gn-l)
or briefly x( C ). Assume x(0) = r, and let V, be a measurable neighborhood

of zero in the local coordinate system.

Let S%! be the unit (n-1) sphere; we consider n(® ): dR—e Sn-l.

Define (¢ ) : Vl — Sn-l by n(x (C)) = 6( é)o Thus

nect =—=>occl.
: 1
Let = (Ap) =p/ipl , p EE" - {O}; then (Z € C*. Our approach

will be to utilize the implicit function theorem on the relation

(., Pr=0o(f) -¥

We note that G € Cl, and if ;ﬂo = ¢(p°) then G(O, ;ﬂo) = 0. Also
Ge (0, #) = (o) It must be shown that det(Gc (0)) # o.

From dlfferentlal geometry we recall that as c varies in Vl, x( §)

traces out a region V, on @R while the normal O(é) traces out a region

2

V, on the surface of the unit sphere. Let K(&§ ) denote the Gaussian curvature

3
of OR at x(é), and A, the "area" of V_. Then

3 3
Ay = j K({)a§ . But f det 6—9-(5g—) > = A;. Since V, is
v v

1l 1
de(f) )\
arbitrary (but measurable) and © € C*, this implies det __a_;- = K( g).

By assumption K is positive at all points of OR , hence
det(Qf (0)) # 0. The implicit function theorem now gives the existence
of a ¢! function € ($) such that 6( (¥, $r=o0

Then r*(p) = x( { (P(p) € c.|]
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The following is an example of a strictly convex set R with smooth
boundary and a point at whichthe Gaussian curvature K is zero, for which
r*(p) is not ct.

EZ . b

Let part of the boundary of RC consist of the curve y = x , the
rest so as to make R strictly convex and with smooth boundary. We restrict
our attention to the defined part of the boundary, in particular to the
point (0, 0) at which K is zero.

The outward normal is given by (4 x3, -1). Let p =(p1, p2) have p,

negative and p, near zero. To compute r*(p) = (x*(p), y*(p)) we compute
the point on the curve y = xu where the normal has direction numbers

- V3 - 4/3
(—pl/pz, -1). This gives x*(p) = (" P1/4 p2) s ¥ (p) = ( pl/lrpz)

]

o x*(p) .
and —5—;;2— is seen to not be continuous at P = 0.
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APPROXIMATION OF OPTIMAL TRAJECTORIES

The Time Optimal Problem

Consider the system (3-1), with U a compact set, and initial data
x(to) = x o Let S be a smooth (CZ) manifold in the (n+l) dimensional
(t,x) space with the property that for any t

(t,x)€ES: t, <t = t}}

20ty { 2
is compact in En+1° The problem is to find a measurable function u = u(t)
having values in U, such that the solution of the initial value problem
for (3~1) with u = u(t), intersects the target S in minimum time; i.e.,
is an optimal trajectory.

We next give the conditions of Fillipov [2] » which insure the

existence of an optimal (open loop) control, and optimal trajectory for

the time optimal problem.

Existence Conditions

(3-3) f(t,x,n) is continuous in all variables t,x and u, and is
continuously differentiable with respect to x.

(3-4) x-f(t,x,u) = C( |x|2+ 1) for all t, x, u.

(3-5) R(t,x) = {f(t,x,u):u € U} is convex for every t,x.

(3-6) There exists at least one measurable function u(t) with values
in U, such that the corresponding solution of the initial value,

problem for (3-1) attains the target S for some =t

Equivalence of Problems

Let the same time optimal problem, as posed for (3-1), also be posed

for the system

(3-7) ;(t) = g(t,x(t),v(t)), v(t) € V, a compact set,

where g satisfies condition (3-3). Let Q(t,x) = ig(tsxav):v €,VI .
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. Theorem III.3 Assume the existence conditions are satisfied for the
time optimal problem for the system (3-1). Let (e ; u*) denote the
optimal trajectory and u* the optimal control. Then if Q(t,x) = R(t,x)
for all (t,x), ( * ; u*) is an optimal trajectory for the time
optimal problem for the system (3-7) and there exists a measurable
function v*(t) with values in V such that  (t; u*) = g(t, @(t;u*),v*(t))
almost everywhere.

Proof f{t, #(t; u*), u*(t)) is a measurable function of t, with

values (almost everywhere) in R(t, ¢Z(t; u*)), therefore in Q(t,(t; u*)).
From lemma 1 of Fillipow [2] s there exists a measurable function v*(t)
with values in V such that f(tv)"a(t;u‘),u*(t)):g(t,}a(t;u‘),v‘(t)) almost
everywhere. It follows that 9;(1:; u*) = g(t; Z(t;u*), v*(t)) almost
everywhere,

. Now if A+ ; u*) were not an optimal trajectory for (3-7), i.e.,
#( e ; v) provides a better time, the same argument shows that ¢ * ; v)
is a solution of (3-1) for some measurable control u with values in u,
thereby contradicting the assumed optimality of 50( *3 u*).l

This theorem stresses the fact that in seeking optimal trajectories,

it is the set function R(t,x) which is of major importance, not the
function f(t x,u) or the control set U.

When the conditions of theorem III.3 are satisfied we define the time

optimal problem for the system (3-7) to be equivalent to that for (3-1).

If the existence conditions are satisfied for the time optimal problem,
from conditions (3-4) and (3-6) we can obtain a compact region of (t,x)
space to which analysis can be restricted. Indeed for to_<_ t= tl
condition (3-4) implies any solution x(t) of (3-1) satisfies

‘ |x(t)l2 = (|x°| 2, 1) exp (2C |tl=t°| ). Here |x(t)] stands for the usual

Euclidean norm. Henceforth, we denote by oO’ the compact region of (t,x)
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: 2 2 »
space defined by t =t =2 t; , x| "= (|x | "+ Lexp (2¢ |2t -t _|).

Definition. The Hausdorff metric topology for non-empty compact sets in

ER is derived from the following metric: The distance between two non-
empty compact sets X and Y in the smallest real number d = d(X,Y) such
that X lies in the d neighborhood of Y and Y lies in the d neighborhood

of X.

€ Approximate Equivalent Problems

Definition. For givem € > O the time optimal problem for the system
;: = nf (t,x,v), h€continuous on I-:::L)(}T'..n)(‘l(e)'i is said to be an €
approximate equivalent problem to the time optimal problem for (3-1) if the
set R(t,x,€) = ihe’ (tyx,v): vG,V(G)‘?,L — R(t,x) and
d(R(t,x,€ ), R(t,x))=€ for all (t,x)e & .

Since h€ (t,x, » ) is continuous on the compact set V(€), R(t,x,€)

is compact,.

Theorem III.4. Assume that the Fillipov conditions (3-3), (3-4) and (3-5)

are satisfied for the time optimal problem with system equations (3-1).

—

Then for every € > O there exists an € approximate equivalent problem
with system equations ; = n (t;x,v), vEV(E) which satisfies the
following properties.

a) The control set V(€ ) can be taken to be the unit ball of En,
which we denmote B,

b) h€ is a ¢™ function on & x B, while for each (t,x)e & ,

n€ (t;,x,* ) is one~-one on B ———» ES,

¢) The set R(t,x,€)

Mt

{he (tyx,v):s vean has smooth boundary

having positive Gaussian curvature.
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d) The (single valued) function v*(t,x,p) with values in B” which
maximizes H(t,x,p,v; € ) = p - n (t,x,v) - 1 for each (t,x)€ OG'o
PE E°- {0} s is C:L in t,x, and p. Actually v*(t,x,p) e 8" = Sn-l,

the (n-1) sphere,

The proof will proceed by obtaining a simplicial approximation to ab'
in which the diameters of the simplexes are sufficiently small. For
each vertex (t'i’ xi) of a simpliex, we approximate the convex set
R(ti’ xi) by a strictly convex set Q(ti’ X, € ) having positive
Gaussian curvature. A vector function ge(tig x5 ) is then con-
structed so that Q(tiq x5 & ) = igé (tig Xy 3 v): veBn:é , and by use
of g€ , the set function Q is extended continuously to all of 90' in
such a manner that for each {t,x}€ & s, Q(t,x; € ) has smooth boundary
with positive Gaussian curvature. The desired function h€ is then ob-~
tained by smoothing the functior g‘i in the variables (t,x) via the
Friedricks mollifier technique.

Proof R(t,x) is continucus, in the Hausdorff metric topology, on the
compact set a?f" » For any § * O let & > O be such that
a(R(t,x),R(t",x')) «¥/8 whenever %(tgx)u(t"gx')g < 9. Let o,_gn+l be
any bounded- geometric simplex which contains ob‘ s and Kg be the geometric
complex consisting of this single simplex. By barycentric subdivision
Kg can be subdivided into a geometric complex Ké consisting of a family

n+l Y

of geometric simplexes i?“g 3 ;, each having diameter less than 6.

Each point (t,x)€ 90" has a unique representation of the form

(t,x) = Z eLi (tig .xi) with 0:0(,1 =1, Ze(.,i = 13 where the

(n+2) points (ti" xi) are the vertices of the geometric simplex from
the family id:gnﬂ} to which the point (t,x) belongs. Without loss of
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generality we can now consider the union of the members of {E;gn+1}
which have all vertices in 40‘ as a new domain of interest; call this
domain again A‘ o

Let (ti, xi) be an arbitrary vertex in oJ~. Then R(ti, xi) is con-
vex. Let Yl(R(ti, xi), €/4) be a convex €/4 neighborhood of
R(ti, xi). From [6 s P& 38] there exists a strictly convex set
Q(ti, X € ) containing 71(R(ti9 xi), €/4); having an analytic boundary
with positive Gaussian curvature, and such that
AQt, x5 € ), MUR(E, x,), €/4)) < &,
For each (tig xi)€ A e construct a corresponding set Q(ti, X € ) as
above. We next proceed to define a set valued function Q(t;x, € ) on all
of 40' .

It can be assumed without loss of generality that O € R(t,x) for all
(t,x) € 06' . Indeed if this were not so, ome could choose a point
u, € U and construct new sets S(t,x) = gf;t,x,u) - f(t,x‘,uo): u en}
which satisfy this property.

Let B® be the unit ball in E% S°© its' surface and vi,...,v" T a
coordinate system on Snz’l while v' measures distance from the origin.

Then a ray from the origin through (vl9 vz, o o o g vn—l, 1) strikes

BQ(ti9 X, s € ) in a unique point which we derote g% (ti,xi,vl,o.o,vn-l,l).

This defines g€ (tiﬁ,xi‘i *) on Sn-ls to extend it to B let

v = (vl, o o o v®) B". Define g€ (tig Xy v) as that point in

Q(ti9 X, ,€) which lies on the ray through the origin and

1 n-1

(v, « « o« 3 vV ", 1) and is such that

ige‘(tgxgv)I _h

) 1 n-l
!ge (t,X,V 40007 51

1
<
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Then ge (1:i9 Xy * ): B® — Q(tiv X, € ) in a one to one fashion.
We will define Q(t, x, € ) on all of & by extending the definition
of g€ to all (t,x)e D .
n+2
Assume (t,x)€ A‘ . Let (t,x) = Z o(,i (ti’ xi) be the unique
i=1

representation of (t,x) in terms of the vertices of the geometric

simplex of K' to which it belongs. Define
€ ne2
ge' (t,x,v) = Z o(_,i ge (ti° X5 v), VE B". Then if
i=1

Q(t,x, €) = {ge (t,x,v):ve8n§ it follows that:

1)  N(R(t,x), €/8)CQ(t,x,£). Indeed, from the choice of & ,
N(R(t,x), €/B)CN(R(L,, x,), €/4)CQlty, x,, €) for all

vertices (ti’ xi) of the simplex in which (t,x) is contained.

But Q(t,x,€) = L o(i Q(ti, X, € ). Thus if a point is in

YUR(t, x), €/8) it is in Q(t,x; € ).

ii) d(Q(t,x,€), R(t, x)) <« 3€/4. To show this one notes that

R(t;, x,)C n(R(tj‘, x.), €/4)C,Q(tj, x5 € ) for all

3

i, =1, 2, » ¢ « 5 n+t2. Therefore

d(R(t,x),Q(t,x, €) = d(R(t,x), R(tig xi)) +

a(R(t,, x,), % oy Qlty, x;0 €)= €/8 4

j‘
max [d(R(ti, xi),Q(tj, Xy € )] = €48 +
3

max [d(R(t19 xi)gR(tjq xj))+d(R(tjg x

1Q(t, x,€))] = 3€74.
j J

J J




iii) Q(t,x,€) is strictly convex, with smooth boundary having positive

Gaussian curvature, for each (t,x) . Indeed of K(t,x,vl,...,vn-l)
is Gaussian curvature at the point g(t,x,vl,...,vn-l, 1)€ 3R (t,x,€ ),
1 n-1, W2 1 n-1
then K(t,x,v jo.0,v ) = y oLi K(ti, Xis VgooeyV e

i1

iv) From the constructionm, ge (t,x,v) is analytic in v for fixed (t,x)

and continuous in (t,x) for fixed v.

Combining the results of i) and ii) shows that for (t,x)e 40",
N(R(t,x), €/8) CQt,x,€)T N(R(t,x), 3E/4).

It will next be shown that using g (t,x,v) one can construct a mapping
h€ (t,x,v) on A x B® — E® such that if R(t,x,€) = %he(t,x,v):vé Bn} ,
then R(t,x, £) is a strictly convex, compact set containing R(t,x);
d(R(t,x, €),R(t,x,))< € ; 9R(t,x,€) is smooth with positive Gaussian

curvature, and if n(t,x,h€ (t,xgvlwoa,vn-l,l) is a unit normal to

OR(t,x, €) at hE (t,x, vi,...,v* L, 1) then it is a C® function of all
arguments.
For simplicity of notation let y = (t,x) denote a point in 06“ , and

let Sk(y‘-;) be a mollifier function; see [7] » As an example one could

n+l n+l >
choose Sk(ya;) = (k/47T) 2 exp {" % [ z (Yl -y) ] °
i=1

Extend ge (y,v) as the zero function for y in the complement of B .

Lk 5 € G o
Define h (y,v) =f Sk(yay) ge' (y,v) dy -
En+1
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Then for every integer k = O, hk is an analytic function, while hk and its
derivatives with respect to v tend uniformly to ge and its derivatives

with respect to v.
Let Rk(t,x‘,a) = {hk(t.x,v): ve Bt } . Since the Gaussian curvature to

0Q(t,x,€) is given as a multilinear combination of the derivatives
sev,_(t,x,vl.....vn-l,l) while the curvature of O Rk(t,x. €) is given by the

n-1

same multilinear combination of the derivatives hl;t(t,x,vl,...,v ,1); one

can choose k sufficiently large so that aﬁk (t,x,€) has positive
Gaussian curvature while R(t,x) C H'k(i:gx9 e)C N(r(t,x),€). For such a
choice of k, define n® (tox,v) = hk(t,,x,v), R(t,x, &) z{he(t,x,v):veBn} .

From its construction, h® satisfies conclusions a), b) and ¢), while a

1

unit normal n(t,x,h® (t,x,v ,“o,vn-l,l)) to oR(t,x,€) is a Cl function

of (t,x, vl,,oo,vn-l)

It remains to show part d). Using lemma III.3 define r*(t,x,p; €) as
the unique point on 3R (t,x, €) such that n(t,x,r*(t,x,p,€)) = p/ipt . It
will be shown that r* is a C1 function of t, x, and p by a proof similar
to that of theorem III.2. Defining v*(t,x,p) as the unique point on EBn
such that h (t,x,v*(t,x,p)) = r*(t,x,p, €) it follows that v* maximizes
H(t,x,p,v; €) and it will be shown that v* is a Cl in t, x and p.

For fixed (t,x), we have

€ 1 n-1
g1 B (X oV o0,V ,1); BR(t,x,e):n(t’x’r) - gt-1

1 1l

which naturally induces a map Q(t.xgvl,”o,vnﬂl) from 8%+ «— = sU7% ge-

= n(t,x,h€ (tgxgvl,o”,vn-l,l))o Since we are

n-1

fined by G(tz,x,vl9 oo ,vnal)

, no confusion should occur if for the re-
n-1 n-1

only interested in aB” =5

mainder of this argument we let v = (vl,,“,v ) ES and therefore write

o(t,x,v). This will be done.
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Let ¥= $Ap) = p/ip\, p €E* - (0§ and define

G(t,x,v,¥) = o(t, x, v,) -/ . We will apply the implicit function
theorem to G, which is easily seen to be a Cl function. For each

ts X Vo = po/lpol , there exists a unique point

r, = r‘(to, X po;€) gsuch that if n(to. X, r,) = po/lpol and v _ is

[+]

the unique point on 51 such that n€ (to,xo,vo) = r_, then

G(to, X s Voo Qﬂo) = 0. One next notes that Gv(to,xo,vo, Wo) = Ov(to,xo,vo),

and from the definition of © (see also the proof of theorem III.2)

det [gv(to’ x , vo)] is the Gaussian curvature at r_ € 9R(t, x, € )

o]

which is positive. The implicit function theorem yields the existence
of a C1 function v(t, x, ¥ ) such that G(t, x, v,(t, x, ¥), ¥)=0in

a neighborhood of the arbitrary point t_, x , % . Then
r*(t, x, p; € ) = N (t, x, v(t, x, PAp))) € Cl, while

v*(t, x, p) s v(t, x, ¢Z(p)) is also Cl,l
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THE RELATION OF TRAJECTORIES OF THE APPROXIMATING PROBLEM TO THOSE
OF THE TIME OPTIMAL PROBLEM

We assume the system (3-1) satisfies the Fillipov existence conditions

(3-3), (3-4), (3-5) and (3~6), with t. a time in which the target set § is

1
attainable. For any € > O let n€ (t, x, v), vEV(E), be an € approximate
equivalent problem (not necessarily having the special properties shown to
exist in theorem III.4). From condition (};6) and the relation
R(t, x,€ ) D R(t, x), it readily follows that for every € > O there exists
at least one measurable function v with values in V(€ ) such that the
corresponding trajectory Sﬁe( e ; v) of the € approximate problem
attains the target S.

It will next be shown that when dealing with the approximate problem,
analysis can again be restricted to a compact” set. Indeed any vector
n€ (t, x, v) can be written as f(t, x, u) + of(t, x) where [al(t, x)[< € .

Then for any trajectory x(t) of the aprroximate problem

-21.2_1; lx(t)|2 = x(t)-he (t,x(t),v(t)) =x(t) s £lt,x(t);ult))+x(t)s OC(t,x(t))

= C(1 + |x()]12) +elx(t)] .

g? Io (1 + |x(t)|2)_<_2 C + 2_€|;5_(_£)_|_2_= 2 (C+¢€),
1+ Ix(t)l
2(c+€)(t,-t )
Ix(0)1% =@+ x 1%)e Lot

€
Define & to be the compact region in gl dimensional (t,x) space

2 2
so that |x|° =(1+ EN ) exp [2(C+6)(2 tl=—t°)] s b=t =2t .

Theorem III.5. Consider a sequence {ek} with € > 0O, Gk —e 0
€
k
and let ¢  denote the time optimal trajectory (assumed to exist) for

k
the € Kk approximate problem. Then {Qﬂ } is an equicontinous family on

54




. the interval [to, tl ] . It has a uniformly convergent subsequence

which converges to a function ¢‘ having the following properties.

i) 50. is absolutely continuous
ii) There exists a measurable function u* with values in U
such that Y2 (t) = £(t, @ (), u*(t)) almost everywhere.
1i1) There exists a smallest t* =t such that Pt E s

*
iv) ¢ is a time optimal trajectory for the system (3-1).

Proof We shall prove the conclusions in the order that they are stated.

Without loss of generality, assume that R(t,x, EI)DR(t,x, 62)3 cee JR(t,x).

€
Therefore analysis can be restricted to the compact region A 1, Our first

goal is to show that there is a constant N independent of € K such that
Sk
@' is Lipschitz continuous withlipschitzconstant N. To accomplish this,

‘ for a compact set R in E? let F(R) denote max |r| . For fixed €1,
r€R

R(t, x, Gl) is a continuous set valued function (in the Hausdorff metric
€
1 N
topology) on the compact set A and therefore the composite map

e (R(t, x,él)) is a continuous real valued function on & , hence bounded.

€
k
Let N be its bound. It follows that |h (t, x, vJ| < N for all €k
€x
and any trajectory ? is Lipschitz continuous with Lipschitz constant N.

Thus {5;

*
uniformly to a Lipschitz continuous function ;0 , which is therefore
€x
absolutely continuous. We will not distinguish between {gﬂ §and its

k
}ia equicontinuous and has a subseguence which converges

convergent subsequence.
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ii) We next show that for almost all t€ [to' tlﬂ’ 5'0‘(1:)6 R(t, §ﬂ‘(t)).

Since the set functiom R(t, x) is continuous in the Hausdorff metric
topology (a consequence of the continuity of f), for any VYV > 0 let
R, (t, x) be a closed convex Y ~ neighborhood of R(t, x). Then Ry (t, x)
is also a continuous set functionm.

Since V'ek (t) € R(t, gﬂek(t), €,) and R(t, x, € ) — R(t, x) in
the Hausdorff metric topology, there exists and N such that for all
n = N, ¢ek(t) €Ry (t, $*(t)). Fillipov's proof of theorem 1, [2]
now applies to show that for almost all t, ?‘(t) € RU (t, #*(t)). But
R(t, x) is closed and VJ arbitrarily small, hence 90.‘(1:)6 R(t,/@'(t)) for
almost all t.

From the llemma of Fillipov [2] , We then obtain the existence of a
measurable control u* with values in U, such that for almost all
te [to, tl)], @*(t) = £(t, P*(t), u*(t)).

iii) Let te > to denote the optimal time for the €
k

problem. Since R(t, x, 61) 2 R(t, x, €2) D .o it follows that

" approximate

{t c }is a monotone non-drecreasing sequence of reals bounded above by
k €
L Let t* be its limit. Now % *(t_ )€ § for each k, and
k

t

€

(t.,x) €S: t =t =<t,} is compact in E°'Y, thus @ kit
o 1 ék

iv) Suppose (/* is not a time optimal trajectory for the system
(3-1). Then there exists a measurable control u with values in U and
corresponding trajectory (< ; u) such that ﬂto; u) = X
?(tB; u) € S and t3< t*. This implies that for k sufficiently large,
t,= ¢t 3 but ?( ®*: u) is an admissible trajectory to all € approximate

3 & €4
problems. This contradicts the optimality of % . [ ]
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This theorem essentially tells us that for sufficiently small € ,
the optimal trajectories of the €& approximate problem are uniformly
close to an optimal trajectory of the original problem.

In the next section the "smoothness"™ which theorem III.4 shows is
possible for the feedback control of the € approximate problem, will

be exploited to obtain solutions.

Hamilton-Jacobi Theory

Let the time optimal problem for (3-1) satisfy the Fillipov existence
conditions. Let x = b€ (t, x, v) denote an € approximate system with
the properties a), b), c) and d), shown to exist in theorem III.4. For

the time optimal problem associated with the approximate problem we de-

cr

ine the functions

H(t, x, p, v, € ) spohe (t, x, v) -1

g*(t, x, p, € ) = B(t, x, p, v*(t, x, p), €).

The inequality

(3-8) H(t, x, p, v4&)>H(t, x, p;, v,&€) for all v € BY, v # v*

is a consequence of the definition of v*.
For the sake of completeness we repeat a short argument of Kalman ([1] s

PP. 321-322) to show that for fixed € > O,

n

H;(tv X, p; € ) P .h: (t, x, v*(t, x, p))

he (tg xtp V'(t, xg P))°

H;(tv X, Py € )

Indeed, we know that v*(t, x, p) € 3 B” = Sn"l, thus let g(v) be a smooth

relation such that g(v) = O determines S»n-1 in a neighborhood of v*(t, x, p).

OQ

]
W

Then gv(v*(t, x, p)) v;(t, X, p) = O and gv(v"'(t:9 X, p)) v;(t, X, p)
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Noting that v* maximizes H(t, x, p, v, € ), we consider this maximization

subject to the constraint v € sn—l

y i.e., g(v) = O. The Lagrange multiplier
rule implies H_ + l/gv = O where YV # 0. Evaluting this at v* and multi-
plying on the right by v;(t, x, p) and v;(t, X, p), in turn, gives the

required result.

€ €
It 9’ , ¥ are solutions, respectively, to the boundary value problem

(3-9) B3(t, x, Py € ) n€ (t, x, v*(t, x, p))

(3-10) p = -B(t, x, p, €) = - p+ b (t, x, v*(t, x, p))

b o]
§

with boundary data x(to) = X, x(tl) = x,, then (3-8) shows that

1°
€ €

v(t, ¢Z(t), ¥ (t)) satisfies the necessary condition termed the maximum

principle; for being an optimal (open loop) control for the time optimal

problem of attaining the state xl from the state x, for the approximating

system.

It should be noted that under the conditions assumed, v* € C1 and the
initial value problem for the equations (3=9), (3-10) with data given at to
will have a unique solution in a neighborhood of to. If v* is discontinuous,
this presents a serious difficulty in the application of the maximum principle.

With the (Hamiltonian) function H*(t, x, p, € ), € > 0 and fixed, we

associate the Hamilton-Jacobi partial differential equation
(3-11) Vt(t,x) + H*(t, x, Vx(t, x), € ) =0,

Let the target S be a "smooth" n-dimensional, non-characteristic manifold
in the (n+l) dimensional (t,x) space, and prescribe the Cauchy data
v(t,x) = 0, (t,x) € S. The solution, in the classical sense, of this partial

differential equation problem, we denote by VE: ; the domain of solution by

He, 9.
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The characteristic equations associated with (3-11) are the
equations (3-9), (3-10). If a point (t_, x)) is in N(e, 8) there
exists a point ( t, xl) € 8 such that the boundary value problem con-
sisting of the equations (3-9), (3-10) with boundary data for (3-10)

being x(to) =x , x( tl) =X, has a solution. The solution of such a

°
boundary value problem, when it exists, will be denoted by §ﬂ e, We.
From the continuity condition, for each € > O, Vi(t, gﬂe(t)) exists
and satisfies equation (3-10). (See for example [1} ). Thus we can
make the association %e (t) = Vj (t, Ve(t)).
Let A7(€, S) denote the set of points (to‘ xo)e v&(e, s) for

which t_ = t,; (tl, xl) being the point on S joined to (to‘ xo) by a

€ -
curve (7 . Assume (to, xo)E A (€, 8). If we use the initial data

_ g€ ] . ) .
x(to) =X p(to) = Vx (to, xo), by virtue of knowing a solution of the

partial differential equation we have the proper initial data to reduce

the previous two point boundary value problem for (3-9) and (3-10) to an
E

initial value problem. Thus to determine the trajectory 9& we can

congsider the system

° €
(3-12) X = H;(tg X, vx (tg x); e )q X(to) = xoo
The major advantage of this method is that now v* = v*(t, x, Vi' (t,x)),
i.e., a feedback control.

Theorem III.6 (Kalman) Assume (to, xo)G A’(€, S): Ve is the solution

of the Hamilton-Jacobi equation (3-11) and SVG the solution of (3-12).
Then sﬂe is a time optimal trajectory relative to all trajectories

;ﬂ( e ; v) which connect (to, xo) to S and lie in & (€, 8).



Proof Assume, without loss of generality, that (to, xo) €s.

From the definition of H, H* and Ve ’

0= v:'(t, x) + Vi(t, x)» B (t, x, v*(t, x, V:(t, x))) - 1>V:'(t, x) +

V:(t, x) -he(t, X, V) -1 for all vE€B®, v # v*.
: . e
Assume that t¢ (tg > to) is the first time such that (te , % (tg )€ s.

(3
Let Q denote the set of measurable control functions having values in B"
and leading to trajectories of the € approximate problem which connect
. . - QG .
(to, xo) with a point on S and lie in (€, S). Then is not empty since

(to, xo) €o6‘-(€, S) and Sﬂe a characteristic implies

fce, Nt =t =te} isin A7(e, 8. 1f v (1, 50, vee, #Aen)
is the only function (to within a set of zero measure) in Qe, the result

is trivially true. If this is not the case let v = v(t) be any function in
Qe differing from v*(t, Sﬂe(t), Vi(t,}ﬂé(t))) on a set Aof positive
measure. Let S”( » ; v) be the corresponding solution of the approximate
system and t

the first time such that (ta, go(tzg v) € 8. (¢, > t).

2
<
We must show 1:e tz.

2

Calculating

dvé

Fr (t, ¥t; v)) - 1= Vte(t., At3v)) + v:(t,gﬂ(t;v))- h6 (t,P(t5v),v(t))-120

for all t and strictly less than zero for t & .A. s implying

Ve(te, éﬂ(ta-; v)) - Ve(to, 'xo) < t,-t_. But v (t2 §ﬂ(t2; v)) =0

€
. . . _ < _ .
since (t2’ ’;ﬂ(tz, v)) € S, yielding -V (to, xo) t, - t . Similarly

1]

d € € . . € _ -
v (t, 50 (t)) -1 = O implying - V (to, x,) = tg - t_. Combining the

last two inequalities gives 1:e < - t_, as was to be shown. l

2
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THE CONSTRUCTION OF APPROXIMATING PROBLEMS WHEN THE CONTROL APPEARS LINEARLY.

Theorem III.4 gives conditions for the existence of an € equivalent
approximate problem which has the unit ball B® as the set of values which
the control can assume. However, the functional form of the approximating
system is allowed to vary with € .

In this section we consider a system of the form

(3-13) x(t) = g(t, x(£)) + H(t, x(t)) u(t), |

u(t) € U, a compact convex set in Ef with 1 =<r =n; H an nxr matrix valued
C2 function; while g is a Ca, n vector valued function. For such systems
it is possible to provide a simple construction for € approximate problems.

Since, for the approximate problem, one desires R(t, x, € ) to be strictly
conveX and lemma III,1 shows this implies non void interior, one is led to
extend H to an nxn matrix valued function and approximate the control set by
a compact set V(€ ) which contains U. Furthermore, V(€ ) should have a non-
void n dimensional interior, a smooth boundary with positive Gaussian curvature,
and be such that in the Hausdorff metric topology, lim ' V(E) =10,

€E— 0
The method of construction and the application to approximating problems

will be demonstrated in a two dimensional example; its generalization to

higher dimensions being immediate.

Example III.1 (Bushaw control problem).

Consider the time optimal problem for the system

(3-14) x
1

X = «-x_ + 1
2 1

"
»

with arbitrary initial data x(0) = X and target S = {(t, X, xa):

x) = 0, x2 = O}. The control u is to satisfy -1 <=u(t) =1, i.e., U = [-1,1].
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As an € approximate problem we take the system

(3-15) X, =x, + V)
X, = =X +V,

with the same initial data and target, but with V(€ ) = iveEz: 712+ 62'222 e2 } ’

i.e., an ellipse with gemi major axis 1 and semi minor axis € . Thus in the

Hausdorff metric topology lim V(€) = U, and OR(t, x, € ) is smooth with
€c—» 0

positive Gaussian curvature. From the Hamilton-Jacobi theory

H(t, x, py, V,€) = PyX, + PV = PyXy + PoV, - 1.

Using lemma III.3 one computes

% > s ]-)é

2
T 2 [6 P, *P

v*(t, x, p* = (€2pl [eap 2 2]

1 ‘P2

from which it follows that

-¥%
2 2 2
H.(t9 x, p, € ) = plx2 - szl + [pl e + pa ] - 1.

The associated Hamilton-Jacobi equation is

6) V. (t,x) v (t,x) V(t)[ezvz(t) v2(t)]%1—o
(3-16) g +x, Vo (t,x) - x; V. (t,x) + < X)) + V 3 X -1 =0,

1 2 1 2

Since the independent variables appear linearly, while the dependent
variable has derivatives which appear non-linearly, the Legendre contact

transformation is suggested. Let V(t,x) = W(t,p) - pe x. Then Vt = 't’

V., ="Ps Wp = x and the transformed equation is
W (t,p) - p, W_(t,p) +p, W (t,p) +[€Zp? + 2]%-1_0
t P pl p2 WP p2 pl P Pl p2 - .

The characteristic equations associated with this linear partial differential
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equation are t'(7) = 1, p]'_('l_) = pZ(T)’ pé( T) = - pl(‘l"), yielding

solutions: t =¥ +T P, = Lsin (T+ @), P, = o(cos (T+ &) with

L, 2, ¥ arbitrary constants. Then % Wt(T), p(T)) = 1_[€2p12(1.)+p22(1.)]ﬁ

which, after a slight calculation, gives
(¥-t) %
W(t,p).pyi B, ) =t-F+B [52(122 sin T + p, cosT )2 +(p,cos T -p sinT)z] at.

o
For a time optimal problem with autonomous system equations and target a
a point in state space, the constant & is inconsequential. We consider
® = 0 and omit further reference to it.
By virtue of the transformation, solution trajectories to the system
(3-15) with v = v*(t, x, p) are given by x(t;o(,,/, ¥) = Wp(t,p(t; t(,ﬂ);X)

or specifically

(¥-t)

xl(t; %oﬂ, Xy - d,ez sin(2 T'+/@)cos?'- ol cos (2T’+/@) sinZ; -
[ezo@ sin® @T+&) + o2 cos? (2T ) ]

0

(¥- 1),
ol €%sin(2 T°+[4) sinT + olcos (2 T+&) cosT

[Ea 0(2 sina(a T+8) + o(,2 c052(2T+/@)] "

xz(t; (,/59X) = aT

0

These formulas can be interpreted as follows. If we choose > Oand t = o,

ix(O; oL,/@ s 0): (o(l,g) € Ezi gives the set of initial points x_ from

which the origin can be reached in time -4 by trajectories which satisfy
(3-15) with v = v*(t, x, p). In particular, it can be shown (via the theory

of homogeneous contact transformations) that the jacobian determinant
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B(xl,xz)
9 (ol ,/)

a closed curve in Ez for each\‘ > 0,

is zero, and in this case the set of initial points forms

To generate a field of extremals (it is to be cautioned that the term
extremal is to be taken in the sense of the classical calculus of variationmns;
i.e., not necessarily to infer optimality) choose ¥ = 0 and replace t with -t
in (3-17). For each choice of o, /& one obtains an extremal which is at

the origin at time zero. Varying o, /é now gives a field of extremals.
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